Spinning plates

Consider a uniform $\partial \omega c$ rotating at angular frequency ω about its *axis*. Further consider a *line segment* on this $\partial i s c$ whose $\partial i s tinct end points$ are p and q. Let *axial distances* of p and q be ε and δ respectively. The rotational speeds of $\partial i s tinct end points p$ and q are respectively:

$$\begin{array}{l} \omega \cdot \varepsilon \ (1) \\ \omega \cdot \delta \ (2) \end{array}$$

The difference in rotational speeds, $\Omega[\varepsilon, \delta]$, satisfies:

$$\Omega[\varepsilon, \delta]: \quad \begin{array}{l} \omega(\varepsilon - \delta) \\ \omega(\delta - \varepsilon) \\ < \omega \varepsilon + \omega \delta \end{array} (3)$$

Let $\varepsilon \to 0$. We find that the rotational speed of point *p* is bound by zero from (1) whereas from (3) the difference in rotational speeds is not bound by zero. A *line segment* rotating on a uniform rotating $\partial \omega c$ with some part not rotating does not make a *uniform* $\partial \omega c$!

'Spinning plates' are much more involved to model mathematically than a pseudomathematical approach involving $\partial iscs$, axes, and *line segments*. It's with this motivation that we turn to the topic at hand: exchange of quantities against other quantities.