Spinning plates

Consider a uniform disc rotating at angular frequency ω about its axis. Further consider a line segment on this $\partial \dot{s} c$ whose distinct end points are p and q. Let axial distances of p and q be ε and δ respectively. The rotational speeds of distinct end points p and q are respectively:

$$
\begin{aligned}
& \omega \cdot \varepsilon(1) \\
& \omega \cdot \delta(2)
\end{aligned}
$$

The Difference in rotational speeds, $\boldsymbol{\Omega}[\varepsilon, \delta]$, satisfies:

$$
\begin{gathered}
\Omega[\varepsilon, \delta]: \begin{array}{c}
\boldsymbol{\omega}(\boldsymbol{\varepsilon}-\boldsymbol{\delta}) \\
\boldsymbol{\omega}(\delta-\varepsilon)
\end{array}<\omega(\varepsilon+\delta) \\
<\omega \varepsilon+\omega \delta(3)
\end{gathered}
$$

Let $\varepsilon \rightarrow 0$. We find that the rotational speed of point p is bound by zero from (1) whereas from (3) the difference in rotational speeds is not bound by zero. A line degment rotating on a uniform rotating $\partial i s c$ with some part not rotating does not make a uniform $\partial i s c$!
'Spinning plates' are much more involved to model mathematically than a pseudomathematical approach involving discs, axes, and line segments. It's with this motivation that we turn to the topic at hand: exchange of quantities against other quantities.

